The influence of a metastable structure in plasmid primer RNA on antisense RNA binding kinetics.
نویسندگان
چکیده
Replication of the ColE1 group plasmids is kinetically regulated by the interaction between plasmid-encoded primer RNA II and antisense RNA I. The binding is dependent on alternative RNA II conformations, formed during the transcription, and effectively inhibits the primer function within some time interval. In this paper, the folding pathways for the wild type and copy number mutants of ColE1 RNA II are studied using simulations by a genetic algorithm. The simulated pathways reveal a transient formation of a metastable structure, which is stabilized by copy number mutations. The folding kinetics of the proposed conformational transitions is calculated using a model of a multistep refolding process with elementary steps of double-helical stem formation or disruption. The approximation shows that the lifetime of the metastable structure is relatively long and is considerably increased in the mutants, resulting in a delay of the formation of the stable RNA II structure, which is the most sensitive to the inhibition by the antisense RNA I. Thus the effect of copy number mutations can be interpreted as a compression of the time window of effective inhibition due to an increased time spent by the RNA II in the metastable state. The implications of metastable foldings in RNA functioning are discussed.
منابع مشابه
Effects of ackA, pta and poxB inhibition by antisense RNA on acetate excretion and recombinant beta interferon expression in Escherichia coli
Introduction: Escherichia coli (E.coli) is one of the most widely used hosts for the production of recombinant proteins. The main problem in getting high product yields and productivity is the accumulation of acetic acid (acetate) as an unwanted metabolic by-product. In this study, an antisense-based strategy as a metabolic engineering approach was employed to hamper the acetate excretion probl...
متن کاملANTISENSE RNA TO THE TYPE I INSULIN-LIKE GROWTH FACTOR RECEPTOR REVERSED THE TRANSFORMED PHENOTYPE OF PC-3 HUMAN PROSTATE CANCER CELL LINE IN VITRO
The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype. Interference with the IGF-IR pathway by antisense causes reversal of the transformed phenotype in many rodent and human tumor cell lines. We stably transfected the PC-3 human prostate cancer cell line with an IGF-IR antisense RNA expression plasmid. The ...
متن کاملTemporal translational control by a metastable RNA structure.
Programmed cell death by the hok/sok locus of plasmid R1 relies on a complex translational control mechanism. The highly stable hok mRNA is activated by 3'-end exonucleolytical processing. Removal of the mRNA 3' end releases a 5'-end sequence that triggers refolding of the mRNA. The refolded hok mRNA is translatable but can also bind the inhibitory Sok antisense RNA. Binding of Sok RNA leads to...
متن کاملIdentification of RNA-binding sites in artemin based on docking energy landscapes and molecular dynamics simulation
There are questions concerning the functions of artemin, an abundant stress protein found in Artemiaduring embryo development. It has been reported that artemin binds RNA at high temperatures in vitro, suggesting an RNA protective role. In this study, we investigated the possibility of the presence of RNA-bindingsites and their structural properties in artemin, using docking energy ...
متن کاملCellular Morphology and Immunologic Properties of Escherichia coli Treated With Antimicrobial Antisense Peptide Nucleic Acid
Background & Objectives: Antisense peptide nucleic acids (PNA) that target growth essential genes show potent bactericidal properties without cell lysis. We considered the possibility that whether PNA treatment influence the bacteria total nucleic acids content and apply approach to develop a new delivery system to Dendritic cells (DCs). DCs are the most potent antigen presenting cells in th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 23 18 شماره
صفحات -
تاریخ انتشار 1995